321 |
Rectified 321 |
Birectified 321 |
Rectified 132 |
132 |
231 |
Rectified 231 |
|
Orthogonal projections in E6 Coxeter plane |
---|
In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.
Coxeter named it 231 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 2-node sequences.
The rectified 231 is constructed by points at the mid-edges of the 231.
These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .
Contents |
Gosset 231 polytope | |
---|---|
Type | Uniform 7-polytope |
Family | 2k1 polytope |
Schläfli symbol | {3,3,33,1} |
Coxeter symbol | 231 |
Coxeter-Dynkin diagram | |
6-faces | 632: 56 221 576 {35} |
5-faces | 4788: 756 211 4032 {34} |
4-faces | 16128: 4032 201 12096 {33} |
Cells | 20160 {32} |
Faces | 10080 {3} |
Edges | 2016 |
Vertices | 126 |
Vertex figure | 131 |
Petrie polygon | Octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube. Its 126 vertices represent the root vectors of the simple Lie group E7.
This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331.
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the 6-simplex. There are 56 of these facets. These facets are centered on the locations of the vertices of the 321 polytope, .
Removing the node on the end of the 3-length branch leaves the 221. There are 576 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131, .
E7 | E6 / F4 | B6 / A6 |
---|---|---|
[18] |
[12] |
[7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] |
[12/2] |
[10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] |
[6] |
[4] |
Rectified 231 polytope | |
---|---|
Type | Uniform 7-polytope |
Family | 2k1 polytope |
Schläfli symbol | {3,3,33,1} |
Coxeter symbol | 231 |
Coxeter-Dynkin diagram | |
6-faces | 758 |
5-faces | 10332 |
4-faces | 47880 |
Cells | 100800 |
Faces | 90720 |
Edges | 30240 |
Vertices | 2016 |
Vertex figure | 6-demicube |
Petrie polygon | Octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231.
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the rectified 6-simplex, .
Removing the node on the end of the 2-length branch leaves the, 6-demicube, .
Removing the node on the end of the 3-length branch leaves the rectified 221, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131, .
E7 | E6 / F4 | B6 / A6 |
---|---|---|
[18] |
[12] |
[7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] |
[12/2] |
[10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] |
[6] |
[4] |